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The Light Field Attachment:
Turning a DSLR into a Light Field Camera Using

a Low Budget Camera Ring
Yuwang Wang, Yebin Liu, Wolfgang Heidrich, and Qionghai Dai

Abstract—We propose a concept for a lens attachment that turns a standard DSLR camera and lens into a light field camera. The
attachment consists of 8 low-resolution, low-quality side cameras arranged around the central high-quality SLR lens. Unlike most
existing light field camera architectures, this design provides a high-quality 2D image mode, while simultaneously enabling a new
high-quality light field mode with a large camera baseline but little added weight, cost, or bulk compared with the base DSLR camera.
From an algorithmic point of view, the high-quality light field mode is made possible by a new light field super-resolution method that
first improves the spatial resolution and image quality of the side cameras and then interpolates additional views as needed. At the
heart of this process is a super-resolution method that we call iterative Patch- And Depth-based Synthesis (iPADS), which combines
patch-based and depth-based synthesis in a novel fashion. Experimental results obtained for both real captured data and synthetic
data confirm that our method achieves substantial improvements in super-resolution for side-view images as well as the high-quality
and view-coherent rendering of dense and high-resolution light fields.

Index Terms—Light Field, Super-resolution, Computational Imaging.
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1 INTRODUCTION

Recent years have witnessed a strong renewal of interest in
capturing and reconstructing light fields (see, e.g., [1], [2]). The
main driving force of this body of work is the realization that
many interesting applications of light fields (e.g., [3], [4], [5])
are currently hindered by the low resolution and poor image
quality of commercially available light field cameras. State-of-
the-art light field camera designs attempt to take advantage of
the redundancy in the light field data structure to achieve a better
trade-off between the spatial and angular dimensions, by means of
both hardware and software innovations. Some of these designs
involve the modification of existing cameras and adding pro-
grammable apertures [6], [7] or coding modules [2] into traditional
camera designs, and these approaches use compressive sensing to
recover high-resolution spatial information. However, this kind of
internal camera modification is difficult to build and inevitably
compromises the resolution of the 2D imaging mode as well as
other optical properties, such as the light efficiency in the case of
coded modulation [2].

Meanwhile, discrete low-resolution cameras are continuing to
decrease in both size and cost, which prompts us to propose a
ring of many such cameras (8 in our prototype) that can act as a
lens attachment for a central high-quality DSLR camera, thereby
converting the DSLR camera into a light field camera without
compromising its 2D imaging performance. We take advantage of
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Fig. 1. Left: Conceptual design of our light field lens attachment. Right:
The top left image is a scene captured using our system, and the top
right image is the estimated disparity map. The bottom four images are:
(a) an image patch from a side-view camera, (b) an image patch from the
center-view DSLR camera, (c) the patch-based super-resolution result,
and (d) the super resolution result obtained using our method.

the high spatial resolution of the DSLR image and the angular
information provided by the side cameras, to devise a new light
field super-resolution method that allows us to obtain a dense light
field in which each view approaches the quality of the main DSLR
camera view.

Specifically, this paper proposes a method called iterative
Patch- And Depth-based Synthesis (iPADS) for light field super-
resolution and synthesis using the low-resolution side views in
combination with a central high-resolution DSLR image. The
key idea of iPADS is to provide high-resolution patch candidates
that are more similar to the high-resolution ground truth of the
side-view images compared with the available central image.
By utilizing depth information using a phase-based rendering
approach, these patches are rendered from the central image to
preserve the high-frequency detail of the central image.

Our proposed iPADS method therefore takes advantage of the
natural complementarity between patch-based synthesis (ensuring
low-frequency accuracy) and depth-based synthesis (preserving
high-frequency detail) in an iterative optimization framework.
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Experimental results demonstrate that the proposed iPADS method
substantially improves the quality of the reconstructed high-
resolution light field. In summary, our key technical contributions
are as follows:

• We introduce a concept for a light field lens attachment
that can convert a DSLR camera into a light field camera
with high spatial and angular resolution, and we develop
the first prototype to confirm its feasibility.

• We present an optimization framework called iterative
Patch- And Depth-based Synthesis (iPADS) to achieve
light field super-resolution using the data captured by
our light field attachment. The proposed method iterates
between patch-based synthesis for super-resolution and
depth based synthesis for providing better patch candidates
to achieve light field reconstruction with high spatial and
angular resolution.

• We propose a new depth-based synthesis method that can
jointly synthesize high-resolution side views using the
texture of the central high-quality view and estimate the
depth of the central view with high quality.

Our proposed light field camera bears some similarities to
several other recent works. Similar to Boominathan et al [8], we
synthesize a high-resolution light field from a high-quality 2D
camera and a low-quality light fields. However, the light field
camera considered in [8] is an integrated device (a Lytro camera),
which increases the cost and limits the available baseline because
all views share a main lens. By comparison, the side cameras
in our method have independent optical systems, which can be
inexpensive because of the low required resolution, and the whole
system allows for much larger baselines. We also show that our
super-resolution method is a significant improvement over that
of [8]. Perhaps most similar to our concept is the upcoming com-
mercial camera by Light1, which consists of an array of discrete
cameras mounted on a common body. Unfortunately, very few
technical details are currently available about either the hardware
or the software of this system. However, we note that from a
hardware point of view, our design allows the use of high-quality
lenses and very high-resolution sensors in the central DSLR, and
that our super-resolution method is a clear improvement over the
state-of-the-art. We believe that the proposed prototype and system
can inspire future light field camera designs in pursuit of better and
much more convenient light field imaging. The data and the code
of this work will be made public.

2 RELATED WORK

Light fields [9], [10] provide a new angular dimension that enables
various visual applications, such as depth estimation [1], [11],
[12], scene refocusing [3], 3D display [4] and microscopy [13],
[14]. Many recent works have attempted to capture or synthesize
high-quality light fields form different types of input data.

Light field capture. In recent years, many light field capture
methods have been proposed. These can first be divided into
camera-array methods and single-camera methods. Camera-array
methods [15], [16], [17] are capable of capturing light fields with
both a high spatial resolution and a large angular range. How-
ever, the hardware required for these methods is expensive and
complex, is nearly impossible to adapt for portable applications,

1. http://www.light.co/camera

and requires considerable bandwidth, storage and power. Single-
camera methods capture the angular information of a scene by
sacrificing spatial resolution or using multiple shots. One subset
of such methods involves adding a lenslet array [18], [19], or a
mask [20] close to the sensor in a traditional camera architecture.
A second subset of such methods is programmable aperture
imaging [6]. Compressive sensing and dictionary learning have
also been applied to reduce the number of images required by
exploiting the self-similarity among light field images [2], [21].
The Pelican imaging camera array [22] is a portable, practical light
field capture system that can be implemented in a cellphone but
has a limited angular range. The concurrent work of Wang et al.
[23] estimates depth by combining a stereo camera and a DSLR
camera. In comparison to [23], our setup uses more side-view
cameras of much lower resolution, with the aim at super-resolution
of a sparse regular light field for dense light field interpolation.

Light field super-resolution. For single-camera light field
imaging, the key disadvantage is its low spatial resolution. Several
methods of restoring high-frequency information have recently
been proposed. On the hardware side, the Lytro ILLUM [19]
changes the original Lytro [18] setup by placing the lenslet array at
different positions, and the Raytrix light field camera [24] employs
a lenslet array with different focal lengths to achieve a higher
spatial resolution. On the algorithm side, Bishop et al. [25] have
proposed a method of estimating both a high-resolution depth map
and light fields in the Bayesian framework using a prior based
on a Lambertian texture. Other super-resolution methods using
Bayesian inference [26] or variational optimization [27] can also
effectively improve the spatial resolution of the light field. The
resolution improvement is, however, typically below a factor of
4×. To achieve a significant improvement, an additional high-
resolution reference image of the same scene is added as input;
to this end, a hybrid imaging system [8] has been proposed based
on a patch based synthesis strategy for synthesizing high-spatial-
resolution light field images with a scale factor of 8×. However,
the quality of the recovered light field images is not as good as
that of the input high-resolution image. The high frequency spatial
details are lost in the recovered super-resolution images.

Light field synthesis. The goal of light field synthesis is
to improve the angular resolution and range of light fields. The
available synthesis methods can be divided into two categories:
depth-based methods and phase-based methods. The former main-
ly depend on an explicit geometry [28] and are sensitive to errors
in the disparity estimation. The latter methods rely less on depth
but requires a denser sampling of the light field as input [29] [26].

Signal processing frameworks using phase-based analysis [30]
or Fourier analysis [31] have also been proposed recently for the
synthesis of light field images using only a few or a small subset
of light field images. Depth-aided phase-based synthesis (DAPS)
[32] combines the advantages of both depth-based and phase-
based method by integrating the depth information into the phase-
based processing framework to compensate for the spatial effects
of floating texture deformation across views. Although the visual
quality of such phase-based synthesis methods is high because
they preserve the high-frequency image components, the recovered
images are not guaranteed to be well aligned with the ground truth
if errors arise during depth recovery. In this paper, we use DAPS
in our depth-based synthesis module.
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Fig. 2. Light field attachment prototype: (a) prototype; (b) design of the
camera layout. Units: millimeters.

3 PROTOTYPE CAMERA SETUP

We place 8 off-the-shelf low-end USB cameras on a custom
aluminum mount around a high-resolution camera, enabling the
sparse light field capture of 3 × 3 views, as shown in Fig.2. All
side-view USB cameras are placed in a regularly spaced square
grid with a distance of 60mm between neighboring cameras. For
the central camera, we use a Canon 600D DSLR camera with a
Canon EF-S18-135mm f/3.5-5.6 IS DSLR lens. We crop the input
images to the region of overlap among all cameras before further
processing. For scenes at far distance, this overlap region will
approach the full sensor resolution, but for the more interesting
case of close scenes considered in this paper, the central image
has a resolution of 2944×1808 after boundary cropping, whereas
the resolution of the side-view images is 368 × 226, which is
exactly 1/8 of the resolution of the central DSLR view in both the
horizontal and vertical dimensions. The goals of this work are to
improve the resolution of all the side views and synthesize a dense
light field with the same resolution as that of the central view.

We fix the focus settings for all cameras and calibrate the
intrinsic parameters of the entire system using a standard camera
calibration toolbox [33]. Then, bundle adjustment software [34] is
applied to calibrate the extrinsic parameters of all cameras with
reference to the central camera. Finally, we rectify each side-view
image by projecting it onto a reference plane parallel to the DSLR
image plane using homography warping, such that all cameras
share the same rotation. Note that although the cameras are
not ideally regularly displaced, the axial displacement errors are
smaller than 3mm and the horizontal and vertical misalignments
are smaller than 1mm; thus, any errors in the image space are on
the sub-pixel scale, and our algorithm is robust to these errors.

4 ALGORITHM OVERVIEW

As shown in Fig. 3, given the captured data from Sect. 3, the
proposed algorithm for the synthesis of high spatial and angular
resolution light fields can be divided into two main steps: iPADS-
based super-resolution of the side-view images with optimized
depth estimation and the synthesis of a dense light filed. The i-
PADS algorithm iterates between the patch-based super-resolution
on the side-view images (step 1 in Fig. 3), depth-based image
synthesis (steps 2,3 and 4 in Fig. 3) and updating the patch
database (step 5 in Fig. 3).

Specifically, iPADS is implemented by iterating the following
steps: 1) Build a feature dictionary for image patch matching
using the given high-spatial-resolution image, then perform patch-
based super-resolution (PaSR) [8] on the low-resolution side-view
images using this patch-based feature dictionary. In this step, some
of the high-frequency texture components are lost because of

(a) (b) (c)

Fig. 4. Loss of high-frequency information in PaSR: (a) ground truth; (b)
super-resolution result of PaSR; (c) low-resolution input.

variations in scene depth. 2) Perform multi-view depth estimation
based on the central-view image and the 8 improved-resolution
side-view images. 3) Apply an improved version of the depth-
aided phase-based synthesis (DAPS) approach [32] to render
new side-view images and perform a depth estimation update.
During this step, most of the high-frequency texture information
is restored. 4) Apply an optical-flow-based warping algorithm to
rectify synthesis position errors that may have arisen in step 3 as
a result of depth estimation errors. 5) Add the warped views into
the patch-based feature dictionary. During this step, high-spatial-
resolution images from other views are added to the dictionary to
act as candidates for the next iteration of PaSR.

5 IPADS SUPER-RESOLUTION

This section introduces the proposed iterative Patch- and Depth-
based Synthesis method for achieving super-resolution of the side-
view images and performing depth estimation of the central-view
image. We first introduce the two main components of the process
followed by a description of the iteration scheme.

5.1 Patch-based super-resolution

We adopt a previously developed patch-matching-based super-
resolution [8] method as the first step of our iPADS algorithm.
Patch-matching-based super-resolution relies on the similarity be-
tween the input high-resolution image and low-spatial-resolution
light field. The method first builds a dictionary from the given
high-spatial-resolution image patches and then uses first- and
second-order derivative filters to extract the feature of each high-
spatial-resolution patch [35].

We use the same parameter settings applied in [8]. The patch
sizes of the low- and high-resolution patches are 8×8 and 64×64
respectively. During the first iteration, we use the same dictionary
for each side view, which is constructed from the center-view
DSLR image. During subsequent iterations, we build different
dictionaries for different side-view images using the center-view
DSLR image and the corresponding synthesized super-resolution
side-view images. These synthesized side-view images feature a
similar visual quality as the central input image, but with improved
parallax information corresponding to the desired side views.

However, this method causes high-frequency information to be
lost in the super-resolution images. Note that the super-resolution
versions of the low-resolution patches are generated by densely
sampling the low-resolution image with only one-pixel shifts to
ensure the existence of overlap areas among the super-resolution
patches. For these areas, the average value of all overlapping
super-resolution patches is computed as the final pixel value. As
shown in Fig. 4(b), high-frequency details are lost because of this
average filtering.
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High and low resolution views

①PaSR ② Depth estimation ③Rendering

④ Flow warping⑤Update Dictionary
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Fig. 3. Overview of the pipeline of the proposed iPADS algorithm and dense light field synthesis. iPADS iterates between patch-based super-
resolution (PaSR, step 1) and depth-based synthesis (step 2, 3 and 4) for the synthesis of new images that are then updated into the patch
database (step 5) for better patch-based super-resolution. The depth-based synthesis includes multiview depth estimation (step 2), depth-aided
phase-based synthesis (DAPS, step 3) and optical-flow-based warping (step 4). Finally, a dense light field synthesis step is executed to render the
final output using the estimated depth information.

5.2 Depth-based synthesis

Using the high-resolution central-view image and the side views
after patch-based super-resolution, we perform depth-based syn-
thesis to render high-resolution side views from the central image.
Unlike patch-based synthesis, depth-based synthesis [36] using a
single reference image usually preserves high-frequency details,
although the performance of such methods actually depends on
the accuracy of the depth information. To mitigate synthesis errors
and artifacts due to inaccurate depth estimation, we apply three
sequential processing steps in this module to ensure high-quality
view synthesis and depth estimation. We first estimate a disparity
map following a multi-view disparity estimation pipeline, which
provides a rough but robust initial depth estimation. Then this
initial depth map is refined using the recently proposed depth-
aided phase-based synthesis (DAPS) method [32], which simul-
taneously enables synthesis with high-frequency details for the
target side views. Finally, optical-flow-based warping is applied to
compensate for residual mismatching. Through these three steps,
we successfully obtain side-view images that are as accurate as
possible in which high spatial frequency detail is preserved. The
results exploit the angular information provided by the side views
to obtain better candidate patches compared with the center view
for patch-based super-resolution.

Multi-view disparity estimation Using all 3 × 3 views at
the same resolution, we modify the existing cost volume filtering
approach for binocular disparity estimation [37] by summing all
of the cost-volumes of the 8 center-side stereo pairs. Based on the
observation that the side-view images are obtained from patch-
matching super resolution with missing high frequency details,
we adopt a coarse-to-fine stereo matching strategy by first down-
sampling the 9 view images by a factor of 1/4 to estimate the
initial disparity map and then iteratively up-sampling the disparity
map by a factor of 2 for further disparity map refinement. For the
cost-volume at each pixel position, we search only for the local
minimal cost near the disparity value obtained at the previous
level of granularity.

Depth-aided phase-based synthesis After calculating the
initial disparity map for the central view, we apply the recently
proposed DAPS [32] method to jointly synthesize high-quality
side-view images and iteratively improve the disparity map. The
central view, the synthesized side views obtained in PaSR step, and
the disparity map estimated in the previous step are fed into DAPS
to improve the quality of the side views. DAPS includes a phase-

based image synthesis strategy that can warp from an input image
to a nearby view based on the disparity information. DAPS outper-
forms traditional depth-image-based rendering (DIBR) methods
in two respects. First, DAPS takes advantage of both complex
steerable pyramid filters [38] for signal reconstruction and a depth-
based prior to guide the reconstruction of the spatially varying
effects of floating texture deformation; thus it can achieve coherent
results in the rendering of different views (see the comparison with
a typical DIBR method [39] presented in the supplemental video).
Second, an iterative disparity refinement scheme is incorporated
into the DAPS framework to improve the quality of both the
disparity calculations and the synthesized views.

The original DAPS simply synthesizes novel views (the side
views in our case) using only the texture from source image, i.e.,
the central view. In our case, since the baselines of the central
image and the side images are much wider, simply filling in the
disoccluded regions would result in obvious artifacts. To mitigate
these artifacts, we leverage the available PaSR-synthesized side
view image and trade off between the DAPS-synthesized image.
We first compute a gradient map of the disparity map and then en-
force a Gaussian filter on this gradient image. This filtered gradient
map encodes the weights that are used in the linear combination
of the DAPS-synthesized images and PaSR-synthesized side-view
images. Actually, larger filtered gradient implies that the texture
of the boundary pixels should originate from the PaSR result.
Fig.10 illustrates the immediate result of the filter gradient map
(b) and the blended result (c), the latter of which shows substantial
improvement over the DAPS-synthesized result (a).

To make full use of the multi-view side-view images, we apply
DAPS to each central-side view pair one by one. After the DAPS
processing for one pair is completed, the disparity map for the
central view is refined and is used for the processing of the next
image pair. Fig.5(d) illustrates how the quality of the disparity map
is improved after DAPS refinement. Compared with the disparity
map before DAPS (Fig.5(c)), the PSNR increases by 2.4 dB.

Optical-flow-based warping After DAPS, the high-
frequency details are perfectly recovered in the synthesized side-
view images. However, because of inevitable errors in the disparity
map, the synthesized images are slightly inconsistent with the
ground truth. To remove these local mismatches, we therefore
use the optical flow methods described in section 2.3.6 of [40]
to warp the DAPS-synthesized images to the patch-based super-
resolution images. Since the misalignments are small, the optical-
flow-based approach can effectively remove them. To evaluate this
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image patch ground truth

before refinement: 

PSNR: 26.9

after refinement: 

PSNR: 29.3

Fig. 5. Results of DAPS refinement: (a) image patch; (b) a ground-truth
disparity map; (c) disparity map before refinement; (d) disparity map
after refinement.

(a) (b) (c) (d)

Fig. 6. Results of optical-flow-based warping refinement: (a) ground
truth; (b) error map before warping; (c) error map after warping; (d)color-
coded optical flow used for warping.

flow-based warping step, we present the error maps before and
after warping for a synthetic data set. We use the default parameter
settings in [40]. As Fig. 6 shows, the error after flow-based
warping is much lower. The DAPS synthesized-images contain
high-frequency details recovered from center-view high-resolution
images, and the patch-based super-resolution images contain more
angular information. Through this optical-flow-based warping
refinement, we are able to reduce the local inconsistencies between
the synthesized images and the ground truth. Note that it is
not reasonable to directly warp the central-view image to the
patch-matching-based super-resolution images. This is because the
disparities between the central view and the side views are larger
and the optical flow method is not robust to different kinds of
textures and can easily become trapped in a local optimum.

Fig.7 shows how an image patch evolves during a single
iteration. Compared with the ground truth, the patch after PaSR
lost high frequency details. After DAPS synthesis, the high-
frequency textures are restored, and the PSNR increases. However,
there are still mismatches with the ground truth because of errors
in the inferred disparity map. The warping step achieves another
PSNR improvement, even though the high resolution details are a
little bit lost.

5.3 Iterative optimization
After optical-flow-based warping, we add the synthesized high-
resolution side-view images into the patch-based dictionaries.
Compared with the central-view image, these synthesized side-
view images share a similar image quality but also represent
the parallax differences arising from the offset camera positions.
Therefore, the synthesized side-view images are a better source of
candidate patches for the PaSR step in the next iteration. Here, we
build different dictionaries for different side-view images using
the corresponding synthesized images.

We then iterate the entire iPADS algorithm 4 times to achieve
convergence of synthesized side views and the estimated depths
. The improved dictionary leads to a better patch-based super-
resolution quality in terms of high-frequency recovery, and this
improved preservation of the high-frequency components in turn
leads to better depth estimations and depth-based synthesis. Fig. 8
shows an example of the improvement in the disparity map-
s generated with an increasing number of iterations. We also

(a) (b) (c) (d)

PSNR 26.1 PSNR 27.1 PSNR 27.6

Fig. 7. Evolution of a patch during a single iteration: (a) ground truth; (b)
after PaSR; (c) after DAPS; (d) after optical-flow-based warping.

Iteration 1 Iteration 2 Iteration 3

Fig. 8. Iterative refinement of the disparity map.

quantitatively evaluate our method based on the PSNR metric
on two data sets, maria and still life, for which ground truth
depth information is available. As Fig. 9 shows, the PSNR value
increases with an increasing number of iteration on both data sets.
The PSNR of the depth map is computed in terms of the disparity
(in pixels), and linearly normalize the ranges of the ground-truth
disparity map and our computed disparity map to [0,255], and both
of these two normalization operations use the same minimum and
maximum values. Thus the peak value used to compute the PSNR
is 255, which is the same as that for RGB images.

6 DENSE LIGHT FIELD SYNTHESIS

To synthesize a dense light field, the DAPS method can be adopted
to synthesize images from arbitrary viewpoint close to the central
viewpoint using only the central view-image and its disparity map.
However, as stated in Sect. 5, disoccluded areas in the target view
are not well handled in the original DAPS framework. In our
case, the recovered side views provide angular information that
can be used to fill in these disoccluded areas. We assume that the
disparity of a disoccluded pixel is the same as the disparity of
the closest background pixel on the boundary, then this pixel in
the disoccluded area can be traced and copied from the side-view
images. Using this filling strategy, we can achieve high-quality
dense light field synthesis. Fig. 10 shows the quality improvement
for a disoccluded area in an in-between target view, and our result
with filling dis-occluded area looks much better.

7 RESULTS AND DISCUSSION

We evaluate the performance of iPADS for side views and dense
light field rendering on the Stanford [41] light field data set, the
HCI [42] light field data set, and indoor and outdoor data captured
using our hardware system.

Experimental design For the Stanford and HCI data set, we
select 9 views from each light field with a layout similar to that
of our data capture system. Because these light fields have a much
higher angular resolution compared with ours, we select the side-
view images with d = 3 (distance from the central view in terms
of the number of images) in an 8-adjacency neighborhood of
the central view. The input low-resolution side-view images are
obtained by down-sampling each image by a factor of 1/8, and
the original high-resolution images serve as the ground truth. For
patch-based super-resolution processing, we use the same settings
applied in [8].
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Fig. 9. PSNR values for the depth maps generated in different iterations:
(a) maria; (b) still life

(a) (b) (c) (d)

Fig. 10. Handling disoccluded area: (a) DAPS-synthesized view; (b)
filtered gradient map; (c) result of filling in the disoccluded area using
the side view image; (d) result of filling in the disoccluded area on one
of the dense interpolated image.

Super-resolution results We first evaluate our method on four
light fields: maria, still life, couple, and tarot. The PSNR values
of the PaSR images and our depth-based synthesis images in each
iteration are shown in Fig. 11. Each PSNR value is obtained by
averaging over the PSNRs of all side views. The PSNR values
obtained using both our method and PaSR increases with an
increasing number of iterations, and the PSNRs for our method are
higher than those for PaSR in each iteration. After all iterations are
completed, our method yields an improvement of approximately
3dB compared with the PaSR values for the results obtained
without iteration (i.e., in iteration 1).

In each iteration, the average PSNR value of our results is
higher than that of the PaSR results because our depth-based
synthesis method can more effectively recover high-resolution
texture information from the center-view image. Because of the
dictionary updates, better candidate patches are added into the
dictionaries, contributing to the enhancement of the PaSR results
and allowing more angular information from the low-resolution
images to be exploited. With more angular information, the results
of our depth-based synthesis also improve. We observe that the
improvement in the PSNR value is small after 4 iterations, and
thus fix the number of iterations to 4 for all further experiments.

We also evaluate the super-resolution results based on another
metric, the SSIM index [43], which emphasizes the structural
similarity between images. As Fig. 10 shows, our method results
in a larger improvement on all four data sets. For each data set,
the SSIM value increases with an increasing number of iteration.
Moreover, this increase is more significantly on data sets with
large depth variations, such as the still life data set. This is because
for a data set with large depth variations, PaSR will introduce
blur and structure error, whereas our method attempts to restore
structural information.

Fig. 12 shows several super-resolution patches cropped from
the four simulations. It is obvious that the patches generated by our
method contain better high-frequency details than those generated
by PaSR, especially for patches with large depth variations. Fig. 13
shows super-resolution patches cropped from two of our captured
data sets. Again, our results are much better compared with those
of PaSR. Moreover, a comparison with the high-resolution center-
view image reveals that our method preserves almost all of the
high-resolution details. More super-resolution results are given in
the supplemental materials.
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Fig. 11. PSNR and SSIM of PaSR and our method after different
numbers of iterations: (a) maria; (b) still life; (c) couple; (d) tarot

Ground truth PaSR Our method

Ground truth PaSR Our method

Fig. 12. Comparison of super-resolution results obtained on the data
sets still life and tarot.

Different numbers of side-view cameras We evaluate the
relationship between the quality of the estimated depth map and
the number of side-view cameras using one light field captured by
our system. We consider views captured using 1, 2, 4 and 8 side-
view cameras, where the selected cameras provide a) only the right
side view, b) the left and right side views, c) 4-adjacent views, and
d) 8-adjacent views, respectively. As Fig.14 shows, when more
side-cameras are used, the quality of the depth map increases; in
particular, the depth map generated using 4 or 8 cameras is far
superior to that generated using 1 or 2 cameras. In addition, more
side-view cameras will provide more angular information, which
will provide more help when synthesizing a dense light field.

Dense light field rendering results We synthesize a dense
light field in between the captured views using the image from
the central high-resolution view and the disparity map obtained
via our iPADS method. First, we synthesize a dense light field
with 60 new views, from the central view to the right horizontal
side view; the EPIs of two different rows are shown in Fig.15.
From the clearly structured EPI results, we can conclude that the
synthesized light field images are of high quality and have view-
consistent disparities. Zoomed-in patches of the yellow Minion’s
eye from 3 of the 9 views are shown in Fig.16. To illustrate the
parallax, mixed images constructed using different color channels
from different views are shown and the view variation is obvious.
The result of refocusing two of the light fields captured by our
system are shown in Fig.18. As shown by the zoomed-in patches,
which are focused at three different depths, the depths of field of
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PaSR Our method Central View

PaSR Our method Central View PaSR Our method Central View

PaSR Our method Central view

Fig. 13. Comparison of super-resolution results obtained on real data captured by using our light field capture hardware.

(a) (b) (c) (d)

Fig. 14. Depth map estimation results obtained using our method with
different numbers of side views: (a) right side view only; (b) left and right
side views; (c) 4-adjacent views; (d) 8-adjacent views.

(a)

(b)

Fig. 15. Two EPIs of a rendered dense light field.

the synthesized images become shallower.
We also compare our dense light field rendering results with

those of the traditional DIBR method [39] in the supplemental
video. Note that the depth information used in the DIBR method
is computed using our proposed pipeline. It can be seen that our
proposed iPADS algorithm achieves smooth and coherent angular
rendering quality, whereas the DIBR video suffers from jittering.
This advantage comes from the phase-based rendering strategy
that is naturally integrated into our proposed iPADS framework.
More results for dense light field synthesis and its applications are
provided in the supplemental materials.

Defocus blur in DSLR images Our algorithm still succeeds
when the depth of field of the DSLR camera is quite different than
that of the side-view cameras. Fig.17 shows an example in which
defocus blur is present in the DSLR image. Although the texture of
the image is not clear, the disparity refinement after DAPS yields
plausible results, and the blur is coherently propagated to other
views in the light field.

Computational efficiency In each iteration, our proposed
algorithm performs patch-based super-resolution (step 1), multi-
view depth estimation (step 2), depth-aided phase-based synthesis
(step 3), optical-flow-based warping (step 4), and a patch database
update (step 5). The run times for each step in each iteration are
as follows: step 1, 3min, step 2, 5min, step 3, 15min, step 4,
1min, step 5, 12min. The algorithm was implemented in C++

   

  

  

red 

+

green


red 

+

green


(a)

(b) (c)

Fig. 16. (a) Three selected views from the the synthesizing dense light
filed. The red circles mark the the selected view positions on the whole
light field; (b) mixed image with red and blue channels from view 1, and
green channel from view 3; (c) mixed image with red and blue channels
from view 1, and green channel from view 7.

Fig. 17. Results for a case in which defocus blur is present in the
DSLR image: (a) DAPS-refined disparity map; (b) and (d) final supper-
resolution results for the top left and bottom right side views, respective-
ly; (c) captured center-view image. Please zoom in to see the blur.

without optimization on an Intel i7 fourth-generation processor
with 32GB of RAM. The algorithm is very suitable for GPU
parallel computing (especially in steps 1, 3 and 5), which will
significantly speed up the algorithm.

8 CONCLUSION AND DISCUSSION

In this paper, we presented prototype of a portable lens attachment
that can take advantage of the popularity of DSLR cameras to cap-
ture and reconstruct light fields with high spatial and angular res-
olution. The data captured by this prototype configuration consist
of a high-resolution center-view image and 8 low-resolution side-
view images. Based on the captured data, we developed a method
called iterative Patch- And Depth-based Synthesis (iPADS) for
achieving 8× super-resolution of these low-quality side views and
the synthesis of arbitrary in-between views.

Our proposed method has several limitations. First, its per-
formance will be compromised in the case of non-Lambertian
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Near Focused Mid Focused Far Focused

Fig. 18. Refocusing of light fields captured using our system.

scenes or serious occlusions or defocus blur. On the hardware side,
our current setup still requires camera calibration. In commercial
manufacturing, a mechanically designed locking module can be
added for mounting the attachment on the lens, which will enable
precise positioning and allow the calibration step to be omitted.
Note that the intrinsic parameters of the DLSR camera can be read
from the image header, and the intrinsic and extrinsic parameters
of side-view cameras on the attachment can be fixed and pre-
calibrated. Another limitation is related to the DAPS step. As
shown in Fig. 5, some errors are reproduced by the texture
here, which are predominantly introduced during the phase-based
synthesize (DAPS) step because of its ability to capture detailed
disparity information at the cost of over-sensitivity to texture.
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Seidel, and I. Ihrke, “A reconfigurable camera add-on for high dynamic
range, multi-spectral, polarization, and light-field imaging,” ACM Trans.
Graph., vol. 32, no. 4, Jul. 2013.

[8] V. Boominathan, K. Mitra, and A. Veeraraghavan, “Improving resolution
and depth-of-field of light field cameras using a hybrid imaging system,”
in ICCP, May 2014.

[9] M. Levoy and P. Hanrahan, “Light field rendering,” in SIGGRAPH’96.
ACM, 1996, pp. 31–42.

[10] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The
lumigraph,” in SIGGRAPH’96. ACM, 1996.

[11] S. Wanner and B. Goldluecke, “Globally consistent depth labeling of 4D
lightfields,” in CVPR, 2012.

[12] C. Chen, H. Lin, Z. Yu, S. B. Kang, and J. Yu, “Light field stereo
matching using bilateral statistics of surface cameras,” in CVPR, 2014,
pp. 1518–1525.

[13] M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field
microscopy,” ACM Trans. Graph., vol. 25, no. 3, pp. 924–934, 2006.

[14] R. Prevedel, Y.-G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato,
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